

1st Meeting. SOLLAB Flux and Temperature Measurement Group

J. Ballestrín CIEMAT-Plataforma Solar de Almería (SPAIN)

Heliostat field

Cierchel 1st Meeting. SOLLAB Flux and Temperature Measurement Group April 14-15, 2005, Odeillo, France April 14-15, 2005. Odeillo, France

CAMERA / TARGET METHOD: Indirect Heat Flux Measurement

• CCD camera: 14 bit digitization

1024 x 1280 pixels (pixel size:6.7 μ m x 6.7 μ m)

Spatial resolution: 2 mm

- Lambertian target.
- Water cooled calorimeter (Ø 25 mm)
- From gray levels to kW/m².
- Accuracy of heat flux sensor: ± 3-4%
- Accuracy of the power measurement: $\pm 5-6\%$

ProHERMES 2A CALIBRATION FUNCTION FOR HITREC II RECEIVER

Cierchel 1st Meeting. SOLLAB Flux and Temperature Measurement Group April 14-15, 2005. Odeillo, France

MDF Direct Heat Flux Measurement

- Array of themopiles (HFM fluxmeters).
- Small area (Ø 6.32 mm)
- Response time ~ 10 microseconds.
 Measuring without water-cooling.
- Accuracy of fluxmeters $\pm 3\%$
- Accuracy of the power measurement \pm 5-6%

Signal from the reference HFM calorimeter

Signals from HFM calorimeters

Ciemat '

Hitrec II receiver aperture

Ciemo

Ciema

Ł

Cierchel 1st Meeting. SOLLAB Flux and Temperature Measurement Group April 14-15, 2005, Odeillo, France April 14-15, 2005. Odeillo, France

Direct system (MDF) versus Indirect system (ProHERMES 2)

Advantages and disadvantages

- Spatial resolution
- Simplicity
- Accuracy

How to measure in a non-plane receiver aperture ?

SUMMARY 1

• A hybrid system and procedure for measuring the incident power on the aperture of solar receivers have been demonstrated.

- The advantages of each of the approaches enrich the overall system and thereby the measurements made with it.
- Working with both systems, it is possible to detect changes in their calibration.

• The good agreement betweeen the two methods allows the use of a heat-flux measurement system based on either the direct or the indirect concept or hybridized, depending on the receiver geometry and the size of the area to be scanned.

GARDON HEAT-FLUX SENSORS

Calibration by using dual cavity black-body

Stefan-Boltzmann law; $\Delta T \rightarrow heat \ flux \ error \propto (\Delta T)^3$

Comparison of calorimeters in the laboratory

Normalized Spectral Distribution (1353 W/m², Solar constant)

Zynolyte

Colloidal graphite

Zynolyte:

The sensor overestimates the solar irradiance by 3.6%
Solar absortance 95.4 %

Colloidal graphite:

•Coating used over 3500 kW.m⁻².

- •The sensor overestimates the solar irradiance by 27.9%
- •Solar absortance 84.7 %

CAREFUL WITH SYSTEMS EVALUATED OVER 3500 kW.m⁻²

Calibration by using a thermal balance

1st Meeting. SOLLAB Flux and Temperature Measurement Group April 14-15, 2005. Odeillo, France

Ciema

Calibration by using a thermal balance

1st Meeting. SOLLAB Flux and Temperature Measurement Group April 14-15, 2005. Odeillo, France

Ciema

Ciema

Ciemat

Water flow (liter min ⁻¹)	Inlet Temperature	B (kW m ⁻² mV ⁻¹)	$\frac{\Delta B}{(kW m^{-2} mV^{-1})}$	Uncertainty %	R ²	Repeteability %
				70	R	70
0.5	15.5	110.1	0.9	0.9	0.9954	
1	12.5	109.9	0.8	0.8	0.9985	
1	14.5	111.9	0.5	0.5	0.9995	0.7
1	14	111	0.5	0.5	0.9902	
1	13	110	0.3	0.3	0.9932	
1.6	15.0	110.5	0.3	0.3	0.9980	

SUMMARY 2

• An alternative method of calibrating high-heat flux sensors by thermal balance has been presented. The results are in agreement with calibrations obtained using black-body radiation. However, the proposed method has the potential of being more accurate than traditional approaches.

• This new procedure calibrates sensors to correctly measure under conditions of concentrated solar radiation.

• At present, the thermal balance calibration technique in the laboratory is limited to solar irradiances of approximately 100 kW.m⁻². The next step is to demonstrate this methodology to higher irradiances under non-laboratory conditions in the CIEMAT solar furnace at Plataforma Solar de Almería.

Development of a Radiometry Laboratory

- Spherical black body: 100-1000 °C (± 0.25 %)
- Cylindrical black body: 300-1700 °C (± 0.25 %)
- Pyrometer: 600-3000 °C (± 0.30 %)
- Solar blind pyrometer: 500-2500 °C (± 0.30 %) Pass Band Filter: 1390±20 nm
- Two-color pyrometer: 700-2000 °C (± 0.50 %)
- Two-color pyrometer: 600-1400 °C (± 0.50 %)

Solar blind pyrometer: 500-2500 °C

Pass Band Filter 1390±20 nm

Ciemal

OBJETIVES OF THE LABORATORY

- Periodic calibration of heat flux sensors (Present)
- Periodic calibration of IR pyrometers and cameras (Future)
- Emissivity characterization of material surfaces at high temperatures (Future)

